11 research outputs found

    The distribution and mutagenesis of short coding INDELs from 1,128 whole exomes

    Get PDF
    BACKGROUND: Identifying insertion/deletion polymorphisms (INDELs) with high confidence has been intrinsically challenging in short-read sequencing data. Here we report our approach for improving INDEL calling accuracy by using a machine learning algorithm to combine call sets generated with three independent methods, and by leveraging the strengths of each individual pipeline. Utilizing this approach, we generated a consensus exome INDEL call set from a large dataset generated by the 1000 Genomes Project (1000G), maximizing both the sensitivity and the specificity of the calls. RESULTS: This consensus exome INDEL call set features 7,210 INDELs, from 1,128 individuals across 13 populations included in the 1000 Genomes Phase 1 dataset, with a false discovery rate (FDR) of about 7.0%. CONCLUSIONS: In our study we further characterize the patterns and distributions of these exonic INDELs with respect to density, allele length, and site frequency spectrum, as well as the potential mutagenic mechanisms of coding INDELs in humans. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1333-7) contains supplementary material, which is available to authorized users

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    An integrative variant analysis suite for whole exome next-generation sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data.</p> <p>Results</p> <p>Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation sequencing platforms (SOLiD, Illumina, and Roche 454). The suite employs logistic regression models in conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and mapping errors with high sensitivity (96.7%).</p> <p>Conclusion</p> <p>We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000 Genomes Project. The Atlas2 Suite is available for download at <url>http://sourceforge.net/projects/atlas2/</url>. In addition to a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple web interface. The existing genomic databases displayed via the Genboree browser also streamline the process from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader community.</p

    In silico functional profiling of human disease-associated and polymorphic amino acid substitutions

    No full text
    An important challenge in translational bioinformatics is to understand how genetic variation gives rise to molecular changes at the protein level that can precipitate both monogenic and complex disease. To this end, we compiled datasets of human disease-associated amino acid substitutions (AAS) in the contexts of inherited monogenic disease, complex disease, functional polymorphisms with no known disease association, and somatic mutations in cancer, and compared them with respect to predicted functional sites in proteins. Using the sequence homology-based tool SIFT to estimate the proportion of deleterious AAS in each dataset, only complex disease AAS were found to be indistinguishable from neutral polymorphic AAS. Investigation of monogenic disease AAS predicted to be nondeleterious by SIFT were characterized by a significant enrichment for inherited AAS within solvent accessible residues, regions of intrinsic protein disorder, and an association with the loss or gain of various posttranslational modifications. Sites of structural and/or functional interest were therefore surmised to constitute useful additional features with which to identify the molecular disruptions caused by deleterious AAS. A range of bioinformatic tools, designed to predict structural and functional sites in protein sequences, were then employed to demonstrate that intrinsic biases exist in terms of the distribution of different types of human AAS with respect to specific structural, functional and pathological features. Our Web tool, designed to potentiate the functional profiling of novel AAS, has been made available at http://profile.mutdb.org/
    corecore